2003 Vol. 5, No. 16 2837–2839

Synthetic Studies Directed toward the Assembly of the *C*-Glycoside Fragment of the Telomerase Inhibitor D8646-2-6

Akira Kanai,^{†,‡} Tomoyuki Kamino,^{†,‡} Kouji Kuramochi,[‡] and Susumu Kobayashi^{*,†,‡}

Frontier Research Center for Genomic Drug Discovery and Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Nodashi, Chiba 278-8510, Japan

kobayash@rs.noda.tus.ac.jp

Received May 19, 2003

ABSTRACT

Construction and characterization of the C-glycosidic moiety of telomerase inhibitor D8646-2-6 (1) are described. This is the first example of the C-glycosylation using electron-poor aromatics, 4-hydroxypyrone, as a glycosyl acceptor. The glycosylation reaction and base-promoted isomerization affords desired β -C-glycoside in a 61% overall yield.

D8646-2-6 (1) was isolated as an inhibitor of telomerase from the culture broth of Epicoccum purpurascens by the Mitsubishi Pharma Corporation group. 1 It has a unique C3-pyranosyl 4-hydroxypyrone structure with a conjugated heptaene side chain. The relative and absolute stereochemistry of 1 have not been determined. Analysis of the reported ¹H NMR data of **1** strongly suggests a C^3 - β -galactopyranosyl-4-hydroxypyrone structure, although the chirality of the two centers in the side chain is not known. The galactopyranosyl-4-hydroxypyrone structure is quite interesting when compared to C-glycosides containing phenol or naphthol derivatives as aryl units.² There are some examples of 4-hydroxypyrones connected to a 4-deoxyglucose as sugar moiety, and most of them have antifungal activity.³ The most challenging step in the synthesis of 1 involves the construction of the pyranosyl 4-hydroxypyrone moiety. The α -pyrone moieties

of meroterpenoids (mixed polyketide—terpenoid metabolites) are usually constructed by the cyclization of the corresponding β , δ -diketo esters.⁴ A similar strategy involving the cyclization of α -C-pyranosyl β , δ -diketo ester, which could

[†] Faculty of Pharmaceutical Sciences.

Frontier Research Center for Genomic Drug Discovery.

⁽¹⁾ Kimura, J.; Furui, M.; Kanda, M.; Sugiyama, M. *Jpn. Kokai Tokkyo Koho* **2002**, 8 (in Japanese).

⁽²⁾ For reviews on aryl C-glycosides, see: (a) Jaramillo, C.; Knapp, S. Synthesis 1994, 1. (b) Hacksell, U.; Davis, G. D., Jr. Prog. Med. Chem. 1985, 22, 1. (c) Suzuki, K.; Matsumoto, T. In Recent Progress in the Chemical Synthesis of Antibiotics and Related Microbial Products; Lukacs, G., Ed.; Springer: Berlin, 1993; Vol. 2, p 353. For isolation and structure determination of C-glycosides, see: (a) Ayer, W. A.; Kawahara, N. Tetrahedron Lett. 1995, 36, 7953. (b) Hochlowski, J. E.; Whittern, D. N.; Buko, A.; Alder, L.; McAlpine, J. B. J. Antibiot. 1995, 48, 614. (c) Saijo, R.; Nonaka, G.; Nishioka, I.; Chen, I.-S.; Hwang, T.-H. Chem. Pharm. Bull. 1989, 37, 2940. (d) Imamura, N.; Kakinuma, K.; Ikekawa, N.; Tanaka, H.; Omura, S. J. Antibiot. 1981, 34, 1517. (e) Traxler, P.; Fritz, H.; Fuhrer, H.; Richter, W. J. J. Antibiot. 1980, 33, 967.

^{(3) (}a) Namikoshi, M.; Kobayashi, H.; Yoshimoto, T.; Meguro, S.; Akano, K. *Chem. Pharm. Bull.* **2000**, *48*, 1452. (b) Evidente, A.; Conti, L.; Altomare, C.; Bottalico, A.; Sindona, G.; Segre, A. L.; Logrieco, A. *Nat. Toxins* **1994**, *2*, 4. (c) Xaio, J.-Z.; Kumazawa, S.; Yoshikawa, N.; Mikawa, T.; Sato, Y. *J. Antibiot.* **1993**, *46*, 48.

^{(4) (}a) Hagiwara, H.; Kobayashi, K.; Miya, S.; Hoshi, T.; Suzuki, T.; Ando, M.; Okamoto, T.; Kobayashi, M.; Yamamoto, I.; Ohtsubo, S.; Kato, M.; Uda, H. *J. Org. Chem.* **2002**, *67*, 5969. (b) Zhang, F.; Danishefsky, S. *J. Angew. Chem., Int. Ed.* **2002**, *41*, 1434.

Figure 1. Structure of D8646-2-6 and some examples that contained deoxyglucose as a sugar moiety.

be readily prepared by C-glycosylation of β -ketoester or malonate,⁵ might seem like an obvious synthetic route. However, a direct coupling of 4-hydroxypyrone to the sugar moiety is desirable for establishing a convergent and efficient methodology. Despite extensive studies into the C-glycosylation of electron-rich aromatics,⁶ there have been no reports concerning C-glycosylation of 4-hydroxypyrone. During the course of our investigations into the synthesis of 1, we studied the reaction of 4-hydroxypyrone and galactose derivatives. The results of these experiments are described in this paper.

We examined coupling of O-(2,3,4,6-tetra-O-acetyl- β -D-galactopyranosyl)trichloracetimidate $\mathbf{2}^7$ to 4-hydroxy-6-methylpyrone $\mathbf{3}$ or its TMS ether $\mathbf{4}^8$ (Scheme 1). In both

Scheme 1. Glycosylation Reaction between the Trichloroacetimidate **2** and Pyrones **3** and **4**

cases O-glycosylation proceeded smoothly in the presence of TMSOTf in CH_2Cl_2 affording β -O-glycoside 5^9 in high yield (90% for 3 and 87% for 4), but we could not detect the formation of the desired C-glycoside. With an excellent methodology developed by Suzuki in mind, we also at-

tempted an $O \rightarrow C$ glycosyl rearrangement 10 of 5 by treatment with Lewis acid. Despite varying the reaction conditions (TMSOTf in CH2Cl2, BF3·OEt2 in CH2Cl2, AgClO4 in CH₂Cl₂, etc.), none of the desired C-glycoside was obtained and, in most cases, almost all of the starting material 5 was recovered. The low reactivity of the $O \rightarrow C$ rearrangement could be due to electron-withdrawing acetoxy group at C-2 in **5**. This led us to employ an *O*-benzyl-protected galactose derivative as the glycosyl donor. After a systematic survey of glycosyl acceptors (4-OBn pyrone, 4-OMe pyrone, 4-OTMS pyrone), Lewis acids, and solvents (TMSOTf in CH2Cl2/CH3CN, BF3.OEt2 in CH2Cl2/CH3CN, SnCl4 in CH₂Cl₂, AlCl₃ in CH₂Cl₂), we obtained a mixture of both C-glycosides (7 and 8) and O-glycosides (9 and 10) by treatment of tetra-O-benzyl-D-galactopyranosyl fluoride 6¹¹ with 4-hydroxy-6-methylpyrone 3 in the presence of BF₃•OEt₂ in CH₂Cl₂ (Table 1, entry 1). The structures of the C-gly-

Table 1. Glycosylation Reaction between the Galactosyl Fluoride 6 and Pyrones 3 and 4

entry	pyrone (equiv)	BF ₃ ·OEt ₂ (equiv)	solvent		yiel	d (%)
1	3 (1)	1	CH ₂ Cl ₂	7 (15)	8 (8)	9 , 10 (15)
2	3 (3)	1	CH_2Cl_2	7 (47)	8 (1)	9, 10 (7)
3	3 (5)	1	CH_2Cl_2	7 (56)	8 (5)	9, 10 (20)
4	3 (10)	1	CH_2Cl_2	7 (54)	8 (4)	9, 10 (21)
5	3 (5)	1	CH ₃ CN	7 (9)	8 (14)	9, 10 (2)
6	3 (10)	3	CH_3CN	7 (21)	8 (16)	9, 10 (8)
7	3 (10)	3	CH_2Cl_2	7 (36)	8 (7)	9, 10 (37)
8	4 (5)	1	CH_2Cl_2	7 (40)	8 (3)	9, 10 (38)
9	4 (10)	1	CH_2Cl_2	7 (32)	8 (trace)	9, 10 (46)

cosides **7** and **8** were established by ¹H NMR analysis. The anomeric proton of the minor glycoside **8** appeared at δ 4.71 with J = 9.4 Hz allowing us to determine the β -*C*-glycoside structure. The α -*C*-glycoside structure of the major isomer **7** could not be unambiguously determined from the chemical shift and the coupling constant of the anomeric proton (δ 5.25 as a singlet). However, the strong NOE (7%) between

2838 Org. Lett., Vol. 5, No. 16, 2003

^{(5) (}a) Gervay, J.; Hadd, M. J. J. Org. Chem. 1997, 62, 6961. (b) Allevi, P.; Anastasia, M.; Ciuffreda, P.; Fiecchi, A.; Scala, A. J. Chem. Soc., Perkin Trans. 1 1989, 1275. (c) Stewart, A. O.; Williams, R. M. J. Am. Chem. Soc. 1985, 107, 4289. (d) Hanessian, S.; Pernet, A. G. Can. J. Chem. 1974, 52, 1266.

^{(6) (}a) Kometani, T.; Kondo, H.; Fujimori, Y. *Synthesis* **1988**, 1005. (b) Rasolojaona, L.; Mastagli, P. *Carbohydr. Res.* **1985**, *143*, 246–248. (c) Schmidt, R. R.; Hoffmann, M. *Tetrahedron Lett.* **1982**, *23*, 409–412. (d) Eade, R. A.; Pham, H.-P. Aust. *J. Chem.* **1979**, *32*, 2483.

^{(7) (}a) Upreti, M.; Ruhela, D.; Vishwakarma, R. A. *Tetrahedron* **2000**, *56*, 6577. (b) Kluge, M.; Schneider, B.; Sicker, D. *Carbohydr. Res.* **1997**, 298, 147.

^{(8) (}a) Bonsignore, L.; Cabiddu, S.; Loy, G.; Secci, D. *Heterocycles* **1989**, 29, 913. (b) Ziegler, T.; Layh, M.; Effenberger, F. *Chem. Ber.* **1987**, *120*, 1347. (c) Effenberger, F.; Ziegler, T.; Schönwäelder, K.-H.; Kesmarszky, T.; Bauer, B. *Chem. Ber.* **1986**, *119*, 3394.

⁽⁹⁾ Anomeric proton of 5 appeared at δ 5.20 with J=7.9 Hz.

^{(10) (}a) Suzuki, K. Pure Appl. Chem. 1994, 66, 2175. (b) Matsumoto, T.; Katsuki, M.; Jona, H.; Suzuki, K. J. Am. Chem. Soc. 1991, 113, 6982. (c) Matsumoto, T.; Hosoya, T.; Suzuki, K. Tetrahedron Lett. 1990, 31, 4629. (d) Matsumoto, T.; Katsuki, M.; Jona, H.; Suzuki, K. Tetrahedron Lett. 1989, 30, 6185. (e) Matsumoto, T.; Katsuki, M.; Suzuki, K. Tetrahedron Lett. 1988, 29, 6935.

^{(11) (}a) Kanie, O.; Ito, Y.; Ogawa, T. Tetrahedron Lett. 1996, 37, 4551.
(b) Nicolaou, K. C.; Mitchell, H. J. Angew. Chem., Int. Ed. 2001, 40, 1576.

H-1' and H-2' and the NOE (8%) between H-1' and H-6' unambiguously established the stereochemistry, which indicates that the α -C-glycoside 7 adopts the 1C_4 conformation with the equatorially oriented pyrone moiety. The yield of C-glycoside was improved by using an excess amount of pyrone 3 (Table 1, entry 1–4). In acetonitrile, C-glycosylation did not proceed well, but the desired β -C-glycoside was obtained in higher yield than in CH₂Cl₂. We think that this selectivity is due to the nitrile effect. When TMS-protected pyrone 4 was used, a considerable amount of O-glycosylation products were formed (Table 1, entry 8–9).

To determine whether *C*-glycoside was formed via *O*-glycoside, **9** and **10** were separately treated with BF₃·OEt₂ in CH₂Cl₂ (Scheme 2). Interestingly, both **9** and **10** afforded

Scheme 2. Attempted $O \rightarrow C$ Glycosyl Rearrangement

S.M.	Yield (%)	Recovered S.M.(%)
9	7(9) 8(0)	39
10	7 (trace) 8 (1)	66

only a trace amount of *C*-glycoside. Therefore, C-glycosylation and O-glycosylation compete in the case of 4-hydroxypyrone. These results are quite different from glycosylation reactions involving electron-rich aromatics.

The results also show that the Fries-type rearrangement, which proceeded during acylation of 4-hydroxypyrone, did not occur.¹³

Although the desired β -C-glycoside was produced as a minor isomer, we found that the α -C-glycoside 7 underwent ready and quantitative isomerization^{5a,14} with DBU in refluxing THF. Isomerization probably proceeds via base-

promoted ring-opening followed by recyclization, giving the thermodynamically more stable β -isomer (Scheme 3).

Scheme 3. Isomerization of 7 to 8

Finally, it was necessary to deprotect **8**. Hydrogenolysis of **8** with Pd(OH)₂-H₂ in THF provided **11** in 65% yield (Scheme 4). The ¹H NMR and ¹³C NMR spectral data of **11**

Scheme 4. Hydrogenolysis of the *C*-Glycoside **8**

in CD₃OD were in good accordance with those of 1 except for the differences due to the conjugated side chain moiety.

In summary, glycosylation of 4-hydroxypyrone **3** and galactopyranosyl fluoride **6** provides the first reported synthetic route to C^3 -pyranosyl-4-hydroxypyrone. We also observed the base-promoted isomerization of α -C-glycoside into the desired β -C-glycoside **8**. This two-step process affords **8** in a 61% overall yield. Furthermore, the present investigation supports the proposed C^3 - β -galactopyranosyl-4-hydroxypyrone core structure of **1**.

Application of this method to the total synthesis of 1 is currently in progress.

Acknowledgment. We thank Dr. Tamotsu P. Niki (Gencom Corporation) for helpful discussions and Mitsubishi Pharma Corporation for providing the NMR spectra of D8646-2-6.

Supporting Information Available: Detail experimental procedure, full characterization, and copies of all new compounds. This material is available free of charge via the Internet at http://pubs.acs.org.

OL034873K

Org. Lett., Vol. 5, No. 16, 2003

^{(12) (}a) Hashimoto, S.; Hayashi, M.; Noyori, R. *Tetrahedron Lett.* **1984**, 25, 1379. (b) Andersson, F.; Fügedi, P.; Garegg, P. J.; Nashed, M. *Tetrahedron Lett.* **1986**, 27, 3919. (c) Ito, Y.; Ogawa, T. *Tetrahedron Lett.* **1987**, 28, 4701.

^{(13) (}a) Lokot, I. P.; Pashkovsky, F. S.; Lakhvich, F. A. *Tetrahedron* **1999**, *55*, 4783. (b) Nagamitsu, T.; Sunazuka, T.; Obata, R.; Tomoda, H.; Tanaka, H.; Harigaya, Y.; Omura, S.; Smith, A. B., III. *J. Org. Chem.* **1995**, *60*, 8126. (c) Cook, L.; Ternai, B.; Ghosh, P. *J. Med. Chem.* **1987**, *30*, 1017.

^{(14) (}a) Sugawara, K.; Kohno, J.; Nakanishi, N.; Hashiyama, T. *Tennen Yuki. Kagoubutsu Toronkai Koen Yoshishu.* **2000**, 42, 661. (b) Hosoya, T.; Ohashi, Y.; Matsumoto, T.; Suzuki, K. *Tetrahedron Lett.* **1996**, 37, 663.